Diffusion of User Tracking Data in the Online Advertising Ecosystem

Muhammad Ahmad Bashir and Christo Wilson

Northeastern University College of Computer and Information Science

Your Digital Privacy Footprint

Your Digital Privacy Footprint

Your Digital Privacy Footprint

PubMatic (UDICO

Supply Side Platforms (SSPs)

Adjusted with Real Time Bidding

a CNN rightmedia doubleclick by Google[.] CNN

a CNN rightmedia doubleclick by Google[.]

Model the Diffusion of Impressions in the Advertising Ecosystem

Model the Diffusion of Impressions in the Advertising Ecosystem

- We want to take Real Time Bidding (RTB) into account
 - This goes beyond the current techniques being used

Model the Diffusion of Impressions in the Advertising Ecosystem

- We want to take Real Time Bidding (RTB) into account
 - This goes beyond the current techniques being used
- We want to answer the following:
 - What fraction of user impressions are viewed by ad companies?
 - 1. 2. How much ad and tracker blocking extensions help?

Model the Diffusion of Impressions in the Advertising Ecosystem

- We want to take Real Time Bidding (RTB) into account
 - This goes beyond the current techniques being used
- We want to answer the following:
 - What fraction of user impressions are viewed by ad companies? How much ad and tracker blocking extensions help?
 - 1. 2.

Key Terms:

- 1. **Impressions**: Page Visits
- 2. **Publishers**: First party websites visited by users (e.g. cnn, bbc, espn) 3. A&A: Advertising and Analytics related companies / domains

Overview

- 1. Dataset used in our study
- 2. Our Simulations
- 3. Results
- 4. Ad & Tracker Blocking

6

1. Bashir et al. Tracing Information Flows Between Ad Exchanges Using Retargeted Ads. Usenix Security 2016

- We use data from our prior work.¹
- retargeted ads through 150 top publishers.

1. Bashir et al. Tracing Information Flows Between Ad Exchanges Using Retargeted Ads. Usenix Security 2016

We trained personas using 738 popular e-commerce websites and solicit

- We use data from our prior work.¹
- retargeted ads through 150 top publishers.
- Using this data, we have inclusion chains of all resources

1. Bashir et al. Tracing Information Flows Between Ad Exchanges Using Retargeted Ads. Usenix Security 2016

• We trained personas using 738 popular e-commerce websites and solicit

- We use data from our prior work.¹
- retargeted ads through 150 top publishers.
- Using this data, we have inclusion chains of all resources

1. Bashir et al. Tracing Information Flows Between Ad Exchanges Using Retargeted Ads. Usenix Security 2016

We trained personas using 738 popular e-commerce websites and solicit
Inclusion Chains

Inclusion Chains

Inclusion Chains

Graph Representation

Inclusion Chains

Graph Representation

Inclusion Chains

Graph Representation

Inclusion Chains

Graph Representation a CNN PubMatic rubicon doubleclick by Google⁻ criteo .

Inclusion Chains

Graph Representation

Inclusion Chains

Graph Representation

Inclusion Chains

Graph Representation a CNN PubMatic rubicon doubleclick by Google⁻ 2

criteo L.

Nodes: Publishers or A&A domains Edges: Publisher —> A&A $A&A \longrightarrow A&A$

Inclusion Chains

- **Total**: ~26K
- **Pub —> A&A**: ~10.5K
- **A&A —> A&A**: ~15.5K

• The graph is very dense.

- The graph is very dense.
- No distinct communities
 - Web is not necessary balkanized into distinct groups

- The graph is very dense.
- No distinct communities
 - Web is not necessary balkanized into distinct groups
- Expected top nodes with PageRank and Betweenness Centrality

facebook Google Tag Manager doubleclick by Google^{*} PROJECT Add This[®] criteo. ORACLE'

Goal of the Study

- 2. How much ad and tracker blocking extensions help?

Model the Diffusion of Impressions in the Advertising Ecosystem

1. What fraction of user impressions are viewed by ad companies?

[1]. Burken et al. User centric walk: An integrated approach for modeling the browsing behavior of users on the web. ASS 2005

We simulate browsing traces for 200 users using method from [1].

[1]. Burken et al. User centric walk: An integrated approach for modeling the browsing behavior of users on the web. ASS 2005

We simulate browsing traces for 200 users using method from [1].

User generates an impression on N selected publishers. 1.

[1]. Burken et al. User centric walk: An integrated approach for modeling the browsing behavior of users on the web. ASS 2005

We simulate browsing traces for 200 users using method from [1].

- User generates an impression on N selected publishers.
- 2. Impressions are forwarded to A&A domains via:
 - A. **Direct Propagation:**
 - Present on publisher or won RTB auction. **Observable** (goes through the browser)
 - B. Indirect Propagation:
 - A&A domains learn impressions through RTB participation. **Non-observable**

We simulate browsing traces for 200 users using method from [1].

- User generates an impression on N selected publishers.
- 2. Impressions are forwarded to A&A domains via:
 - A. **Direct Propagation:**
 - Present on publisher or won RTB auction. **Observable** (goes through the browser)
 - B. Indirect Propagation:
 - A&A domains learn impressions through RTB participation. **Non-observable**

[1]. Burken et al. User centric walk: An integrated approach for modeling the browsing behavior of users on the web. ASS 2005

We simulate browsing traces for 200 users using method from [1].

- User generates an impression on N selected publishers.
- 2. Impressions are forwarded to A&A domains via:
 - A. **Direct Propagation:**
 - Present on publisher or won RTB auction. **Observable** (goes through the browser)
 - B. Indirect Propagation:
 - A&A domains learn impressions through RTB participation. **Non-observable**

[1]. Burken et al. User centric walk: An integrated approach for modeling the browsing behavior of users on the web. ASS 2005

We simulate browsing traces for 200 users using method from [1].

- User generates an impression on N selected publishers.
- 2. Impressions are forwarded to A&A domains via:
 - A. **Direct Propagation:**
 - Present on publisher or won RTB auction. **Observable** (goes through the browser)
 - B. Indirect Propagation:
 - A&A domains learn impressions through RTB participation. **Non-observable**

[1]. Burken et al. User centric walk: An integrated approach for modeling the browsing behavior of users on the web. ASS 2005

We simulate browsing traces for 200 users using method from [1].

- User generates an impression on N selected publishers.
- 2. Impressions are forwarded to A&A domains via:
 - A. **Direct Propagation:**
 - Present on publisher or won RTB auction. **Observable** (goes through the browser)
 - B. Indirect Propagation:
 - A&A domains learn impressions through RTB participation. **Non-observable**
- RTB winner is decided based on probability (function of edge weights). 3.

[1]. Burken et al. User centric walk: An integrated approach for modeling the browsing behavior of users on the web. ASS 2005

Node Type

Publisher

Exchange

DSP/Advertiser

Activation

Direct **O**

Indirect 🔅

Activation

Direct **O**

Indirect 🔅

Activation

Direct **O**

Indirect

Activation

Direct **O**

Indirect

Activation

Direct O

Indirect 🔅

Activation

Direct **O**

Indirect 🔅

Activation

Direct **O**

Indirect 🔅

Activation

Direct O

Indirect 🔅

Impressions Observed

We have 3 simulation models:

- 1. RTB-Relaxed: Upper-bound
- 2. Cookie-Matching: Lower-bound
- 3. **RTB-Constrained**: Realistic Scenario

Impressions Observed

We have 3 simulation models:

- 1. RTB-Relaxed: Upper-bound
- 2. Cookie-Matching: Lower-bound
- 3. RTB-Constrained: Realistic Scenario

Impressions Observed

We have 3 simulation models:

- 1. RTB-Relaxed: Upper-bound
- 2. Cookie-Matching: Lower-bound
- 3. RTB-Constrained: Realistic Scenario

Impressions Observed

We have 3 simulation models:

- 1. RTB-Relaxed: Upper-bound
- 2. Cookie-Matching: Lower-bound
- 3. RTB-Constrained: Realistic Scenario

Take Away

- 1. RTB-Constrained is very close to RTB-Relaxed
- 2. 10% A&A see more than 90% of impressions in RTB-Constrained

DoubleClick OpenX PubMatic

14

Impressions With Blocking

Impressions With Blocking

Impressions With Blocking

Take Away

- Disconnect list is most effective.
- ABP is not effective at all due to Acceptable Ads program.
- Due to RTB, impressions are leaked to A&A domains even with blocking extensions.

15

Top 10 Domains

Top 10 Domains

Top 10 companies can view majority of user impressions even with (most) blocking extensions installed

	Domain	Impression %
	google-analytics	97.0
	youtube	91.7
	quantserve	91.6
	scorecardresearch	91.6
	skimresources	91.3
	twitter	91.1
	pinterest	91.0
	addthis	90.0
	criteo	90.0
	bluekai	90.8
100		

Top 10 domains with most observed impressions under AdBlock Plus

Top 10 companies can view majority of user impressions even with (most) blocking extensions installed

Simulation Limitations

- Our simulation models provide approximations
- Different users might have different browsing behaviors • We only simulate with respect to popular publishers
- The ecosystem could have changed from when the dataset was collected (December 2015)
- Not representative of mobile advertising ecosystem

Summary

- on user privacy.
- Ad Exchanges share user impressions to facilitate RTB
 - realistic conditions.
- - AdBlock Plus is not effective at all due to Acceptable Ads program
 - Disconnect performed the best in terms of protecting privacy

• We are the first to provide a model to study the impact of Real Time Bidding (RTB)

More than 10% A&A domains view up to 90% of user impressions under

• Due to RTB, impressions can leak to A&A domains even with blocking extensions

Summary

- on user privacy.
- Ad Exchanges share user impressions to facilitate RTB
 - realistic conditions.
- - AdBlock Plus is not effective at all due to Acceptable Ads program
 - Disconnect performed the best in terms of protecting privacy

• We are the first to provide a model to study the impact of Real Time Bidding (RTB)

More than 10% A&A domains view up to 90% of user impressions under

• Due to RTB, impressions can leak to A&A domains even with blocking extensions

Questions? ahmad@ccs.neu.edu http://personalization.ccs.neu.edu/Projects/AdGraphs/

Backup Slides

Model Validation — Per Publisher

21

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js --> <iframe src="a3.com/banner.html"> <script src="a4.com/ad.js"> </script> </iframe> </body>

</html>

DOM Tree for <u>http://p.com/index.html</u>

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js --> <iframe src="a3.com/banner.html"> <script src="a3.com/pixel.jpg" /> </iframe> </body>

</html>

DOM Tree for <u>http://p.com/index.html</u>

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js --> <iframe src="a3.com/banner.html"> <script src="a3.com/pixel.jpg" /> </iframe> </body>

</html>

DOM Tree for <u>http://p.com/index.html</u>

22

22

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js -->

<iframe src="a3.com/banner.html"> <script src="a4.com/ad.js"> </script> </iframe> </body> </html>

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js -->

<iframe src="a3.com/banner.html"> <script src="a4.com/ad.js"> </script> </iframe> </body> </html>

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js -->

<iframe src="a3.com/banner.html"> <script src="a4.com/ad.js"> </script> </iframe> </body> </html>

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js -->

<iframe src="a3.com/banner.html"> <script src="a4.com/ad.js"> </script> </iframe> </body> </html>

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js -->

<iframe src="a3.com/banner.html"> <script src="a4.com/ad.js"> </script> </iframe> </body> </html>

22

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js -->

<iframe src="a3.com/banner.html"> <script src="a4.com/ad.js"> </script> </iframe> </body> </html>

22
Inclusion Chain from DOM

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js --> <iframe src="a3.com/banner.html"> <iframe src="a3.com/pixel.jpg" /> </iframes src="a4.com/ad.js"> </script> </iframes </body> </html>

DOM Tree for http://p.com/index.html

22

Inclusion Chain from DOM

<html> <body> <script src="a1.com/cookie-match.js" </script> <!-- Tracking pixel inserted dynamically by cookie-match.js --> <iframe src="a3.com/banner.html"> <iframe src="a3.com/pixel.jpg" /> </iframes src="a4.com/ad.js"> </script> </iframes </body> </html>

DOM Tree for http://p.com/index.html

22

DOM -> Inclusion & Referer Graph

<!-- Tracking pixel inserted dynamically by cookie-match.js -->

<iframe src="a3.com/banner.html"> </iframe> </body>

Comparison with Random Model

